4 LO-PHONON-ASSISTED TRANSITIONS...

(1958).

%y, Toyozawa, Progr. Theoret, Phys. (Kyoto) 27, 89
(1962).

3y. Toyozawa, J. Phys. Chem. Solids 25, 59 (1964).

43. E. Eby, K. J. Teegarden, and D. B. Dutton, Phys.
Rev. 116, 1099 (1959).

SH. R. Philipp and H. Ehrenreich, Phys. Rev. 131,
2016 (1963).

K. Teegarden and G. Baldini, Phys. Rev. 155, 896
(1967).

'G. Baldini, A. Bosacchi, and B. Bosacchi, Phys. Rev.
Letters 23, 846 (1969).

83. J. Hopfield, J. M. Worlock, and K. Park, Phys.
Rev. Letters 11, 414 (1963).

93. J. Hopfield and J. M. Worlock, Phys. Rev. 137,
A1455 (1965).

10p, L. Cohen, P. J. Lin, D. M. Roessler, and W. C.
Walker, Phys. Rev. 155, 992 (1967).

1y, Onodera and M. Okazaki, J. Phys. Soc. Japan 21,
2229 (1966).

12y, Onodera and Y. Toyozawa, J. Phys. Soc. Japan
22, 833 (1967).

13w, Y. Liang and A. D. Yoffe, Phys. Rev. Letters
20, 59 (1968).

4w, C. Walker, D. M. Roessler, and E. Loh, Phys.
Rev. Letters 20, 847 (1968).

15y, Toyozawa and J. Hermanson, Phys. Rev. Letters
21, 1637 (1968).

2015

16y, Frohlich, Advan. Phys. 3, 325 (1954).

1", P. Dumke, Phys. Rev. 108, 1419 (1957).

18, G. Thomas, J. J. Hopfield, and M. Power, Phys.
Rev. 119, 570 (1960).

9B, Segall, Phys. Rev. 150, 734 (1966).

2B, Segall and G. D. Mahan, Phys. Rev. 171, 935
(1968).

2R, G. Stafford, Phys. Rev. B3, 2729 (1971).

2G, D. Mahan, Phys. Rev. 170, 825 (1968).

2References cited in Ref. 22.

2R, J. Elliott, Phys. Rev. 108, 1384 (1957).

%K, Park and R. G. Stafford, Phys. Rev. Letters 22,
1426 (1969).

%y, Ramamurti and K. Teegarden, Phys. Rev. 145,
698 (1966).

2Tp, Fischer and R. Hilsch, Nachr. Akad. Wiss. Got-
tingen, IT Math. -Physik. K1, 8, 241 (1959).

283, W. Hodby, J. A. Borders, and F. C. Brown,
Phys. Rev. Letters 19, 952 (1967).

8¢, Kittel, Quantum Theory of Solids (Wiley, New
York, 1967).

R, G. Stafford and K. Park, Phys. Rev. Letters 25,
1652 (1970).

81Note the absorption constant in Ref. 30 should be a
factor of 4 smaller.

%R, J. Elliott, Phys. Rev. 124, 340 (1961).

3y, P. Dahl and A. C. Switendick, J. Phys. Chem.
Solids 27, 931 (1966).

PHYSICAL REVIEW B

VOLUME 4, NUMBER 6

15 SEPTEMBER 1971

Phonon Structure of Impurity-Related Optical Spectra in Insulators”

M. Mostoller, B. N. Ganguly, and R. F. Wood
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830
(Received 14 January 1971)

The theory of optical processes associated with point imperfections in insulating crystals
is briefly reviewed and a practical efficient computational procedure is developed for the de-
tailed application of the theory to systems whose spectra exhibit marked vibronic structure.
This procedure includes the following features: (a) an iterative scheme for extracting the ef-
fective one-phonon density of states from experimental data; (b) the convolution of the one-
phonon spectrum to find the contributions of those n-phonon processes which yield discernible
vibronic structure and the use of moment analysis for higher z-phonon processes; (c) inclu-
sion of the lowest-order effects of quadratic coupling on the temperature dependence of the
zero-phonon line’s half-width and peak position; (d) a simple transformation between phonon
operators in the ground and excited electronic states of the impurity which breaks the mirror
symmetry between the absorption and emission spectra characteristic of the strict linear-cou-
pling approximation. The absorption spectrum of the N color center in NaCl, which exhibits

a great deal of phonon structure, is used to illustrate certain aspects of the calculations.

Good

agreement between theory and experiment is obtained for this example.

I. INTRODUCTION

The modifications of the electronic and vibration-
al properties of crystals produced by the introduc-
tion of point imperfections' have been investigated
extensively in recent years. A particularly large
amount of work has been devoted to the study of
the optical absorption and emission spectra of de-
fects and impurities in insulators, which display

great variety ranging from smooth broad bands with
little or no vibronic structure to spectra in which
only sharp structure is observed. Although the
theory of these optical processes is well under-
stood by now, the calculations involved in its de-
tailed application can become quite complicated.

In spite of this, it would seem that the great wealth
of information about the interacting electron-phonon
system which is inherent in the theory warrants
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considerable calculational effort. In this paper,
we report on various aspects of our efforts to de-
velop an efficient computational scheme which we
believe can be applied to systems whose spectra
exhibit a wide range of vibronic structure.

We have found it most convenient to follow the
formulation of the theory presented by Lax? in 1952
and by McCumber® in a series of papers dating
from 1964. Lax’s work, which followed (chrono-
logically) the work of Huang and Rhys, * Pekar, °
and Williams, ® does not explicitly discuss the zero-
phonon line and other vibronic structure. This is
not an inherent shortcoming of Lax’s approach but
merely reflects the fact that zero-phonon lines and
vibronic structure had not been observed, or at
least not widely studied experimentally, for defect
systems at that time. Of the many papers which
followed this earlier work, we would like to men-
tion a few which we have found quite helpful, e.g.,
those of O’Rourke, ” Keil, ® and Markham, ° and of
the Russian authors such as Perlin, '° Krivoglaz, !
and Trifonov.'? A summary of much of this work
is contained in an article by Maradudin. '* A re-
view of both the experimental work and earlier ap-
plications of the theory to the class of defects
(color centers) from which we shall later choose
an illustrative example has been given by Fitchen. 1
From the foregoing it should be clear that very
little will be said here about the semiclassical ap-
proach (Ref. 2) in which a model based on one or
two configuration coordinates often suffices to give
remarkably good agreement with smooth broad-
band spectra. However, the connection between
various quantities appearing in the two approaches
is briefly sketched in Appendix A.

There are a few general remarks we would like
to make about our work before beginning a more
detailed account. From the calculations we have
performed, we feel that it should be possible to
obtain excellent agreement between theoretical and
experimental absorption or emission curves for
most cases in which the linear-coupling approxi-
mation is reasonably good. That is to say, the cal-
culations required by the theory in this approxima-
tion can be carried out with great accuracy in a
very short time on the present generation of elec-
tronic computers. A second remark has to do with
the inclusion of quadratic coupling. Without qua-
dratic coupling neither the width nor the position
of the zero-phonon line would be temperature de-
pendent, and the emission and absorption curves
would be exact mirror images of one another about
the zero-phonon line. These features are seldom
if ever exactly observed in real crystals. We have
therefore sought to include quadratic-coupling ef-
fects at a level of approximation which will provide
for at least qualitative agreement with experimental
data and yet allow the calculations to be carried
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out in a reasonable length of time. We believe that
these approximations will, in fact, be quantitatively
sufficient for many impurities and color centers.

In Sec. IT we give a brief review of the theory
and describe a few developments which we have
found useful in applications. In Secs. III and IV
some of the computational details are explained and
calculations on the N, center in NaCl are given as
an example. In Sec. V, several features of our re-
sults are discussed and a number of conclusions
drawn.

II. REVIEW AND DEVELOPMENT OF THEORY

A. Formulation of the Problem and Basic Assumptions

We consider the optical absorption and emission
spectra arising from electronic transitions between
the ground state and a singlet'® excited state of an
interacting defect-lattice system, making the fol-
lowing approximations:

(i) There is no coupling between the two elec-
tronic states via the electron-phonon interaction
(the adiabatic approximation). The effective Ham-
iltonian for the system can then be written as

H=H,C!C,+H,C}C,, 1)

where the C’s are the usual electron creation and
destruction operators, and H, and H, are the
ground- and excited-state phonon Hamiltonians,
respectively, which, however, also contain the
electronic energies at the equilibrium positions of
the nuclei.

(ii) The electronic dipole moment matrix ele-
ment for the transition does not depend on the ionic
positions (the Condon approximation). This is ex-
pected to be a good approximation in many in-
stances, but care must be exercised in its use
since exceptional cases are known.

(iii) The phonons reach internal equilibrium in
times short with respect to the radiative transition
times, so that the phonon ensemble can be charac-
terized by a definite temperature T.

With these approximations, the absorption cross
section 0,,(w) and the spontaneous emission prob-
ability W,,(w) take the form?:®

oa,,(w)=Km[Ma,,|awG(ab; w), 2)

Wia(@) = K o| My | % 0*G(ba; w) . 3)

Here w is the photon frequency, M, is the elec-
tronic dipole moment matrix element, and K,,, and
K., are quantities involving the effective field ratio
and the dielectric constant which will be assumed
independent of w. With the Condon approximation,
the spectral functions G(ab; w) and G(ba; w) are
Fourier transforms of the square of overlap in-
tegrals between phonon wave functions in the ground
and @xcited electronic states, averaged over the
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appropriate initial-state phonon ensemble and sum-
med over final states. In terms of the ground- and
excited-state phonon Hamiltonians, the expression
for the absorption function G(ab; w) reduces to®'3

Glab; w)= f_: dte!“  Glab; 1)
__:f“’ dte“"'(e'”“‘/" e iHpt/n )a , (4)

where (0), denotes the average of a (phonon) op-
erator O over the ground-state phonon ensemble,
i.e.,

(0),=Tre™®0/Tre™a ,

In the emission function G(ba; w), H, and H, are
interchanged, the sign of the time is reversed, and
the average is performed over the excited-state
phonon ensemble.

Harmonic ground- and excited-state phonon Ham-
iltonians are assumed which, with different equi-
librium ionic positions and force constants, may
differ by terms of first and second order in the
phonon amplitudes (linear and quadratic coupling).
In a form that is convenient for absorption, we
write

H,=E;+ Zhﬂwk (a; a,+ 3), (5a)
Hy= H, + wpg + 2 (v, ay + 0¥ a})

+320 Uy (ay+a)) (@ +al),  (5D)
kR’

where a} and a, are creation and annihilation op-
erators for phonons of mode % having frequency w.
v, and vy, are linear- and quadratic-coupling co-
efficients, respectively, and Zw,, is a static ener-
gy difference associated with the a— b transition,
which includes the purely electronic energy differ-
ence. To treat emission, a linear transformation
of the phonon operators

Ay =0 (D Qe + Dy agp)+ T, ®

can be used to cast the excited- and new initial-
state Hamiltonian H, in the form (5a), and the new
final -state Hamiltonian H, in the form (5b):

H,=H, - (m,,,,+2 (VaAp+ VEA]
k

+% 20 Vi (A +A)) (A,,.+A'.)> , (7a)
kR’

Hy=Ey+2 780 (A} Ap+3) . (7o)

We would like to emphasize that in writing the ini-
tial-state Hamiltonian in the simplest harmonic
oscillator form, we include some quadratic-cou-
pling effects in the phonon frequencies w, and Q,
and in the linear-coupling coefficients v, and V,.
This is shown explicitly in the discussion that fol-
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lows.

A case which goes beyond strictly linear cou-
pling, but one for which the transformation in Eq.
(6) can be carried out exactly, occurs when no off-
diagonal (mode-mixing) quadratic coupling is re-
tained. This case is simply related to familiar
configurational-coordinate models which include
quadratic coupling; Appendix A shows how to trans-
late the notation used here into familiar configura-
tional coordinate terms.

With vy, = Ve =0 for 2 #k’ in Egs. (5b) and (7a),
the ratios y, of the phonon frequencies in the ex-
cited state to those in the ground state are found to
be

Ye= Qk/wk= [1+ z(vkk/mk)]llz . (8)

Assuming for the sake of simplicity that they are
real, the linear-coupling coefficients in the two
states are related by

Vk= vn/’)’ 153,2 (9)
and the quadratic-coupling coefficients by
Vie= 'Un/')’k . (10)

In this case, the transformation from ground-state
phonon operators a,, az to excited-state operators
A,, A} is diagonal, with

Ap=dpap+Ppat+ 7y, (11)
o= +1)/2v'%, (12a)
b= =1)/27/%, (12b)
Te= ﬂiﬁliiwi (12¢)

%
The three constant energy differences 7wy, #Q,,
and E, - E, of interest in Egs. (5a) and (5b) and
(7a) and (7b) differ by sums involving the squares
of the linear-coupling coefficients, i.e.,

Ty = Hwye =2 it (Va+1) (0B/Bwy) (13a)

Ey—E,=Rwy, - E‘k'}’;z (vlzb/ﬁwk) .

If there is no quadratic coupling at all, that is, if
U= Vi =0, then the phonon frequencies in the
ground and excited states are the same, y,=Q ,‘/ Wp
=1, and the phonon operators in the two states are
simply displaced from each other, e.g., A,=a,

+ 0, [Fw,.

(13b)

B. Approximations to the Spectral Functions

Because of the formal symmetry between the
equations for absorption and emission, the methods
and approximations used to treat either case apply
with only minor modifications to the other. There-
fore, in the following, we shall concentrate our
attention on absorption, noting from time to time
the substitutions to be made for emission.



2018

The absorption function G(ab; t), defined in Eq.
(4), is calculated by inserting in that equation the
expressions for H, and H, given by Eqgs. (5a) and
(5b). The result is an exponential of an infinite
sum of cumulants, * whose sum rigorously termi-
nates with the second cumulant if only linear cou-
pling is allowed. When quadratic coupling is in-
cluded, the higher-order cumulants do not vanish,
but contribute corrections involving products of
three or more v’'s, of which at least one must be
a quadratic-coupling coe {ficient vy,. As previously
noted, two of the most readily observed physical
effects of quadratic coupling are to make the no-
phonon linewidth and peak position temperature de-
pendent and to break the mirror symmetry between
absorption and emission which occurs in the strict
linear-coupling limit. The first of these effects is
included by quadratic-coupling terms in the second
cumulant, and the second is already implicit in the
transformation given by Eq. (6), as may be seen
clearly in Egs. (8)-(10). The higher cumulants are
not needed to produce these two important physical
effects and, furthermore, since these cumulants
begin at first order in the quadratic-coupling co-
efficients, they are the same for absorption and
emission to this order. It would seem, therefore,
that the higher-order cumulants can be neglected
without serious qualitative consequences, at least
for the case of weak quadratic coupling.

With this approximation, G(ab; t) is found to be

G(ab; t)=e-s e-’lwot e‘l (t)*'lz(f) , (14)
where S is the total Huang-Rhys factor for the tran-
sition, w, is the no-phonon frequency, and g,(¢) and
&»(t) arise from the linear and quadratic coupling,

respectively. In terms of the coupling coefficients,
the Bose-Einstein functions

n(wy) = (e —1)1 |

and individual-mode Huang-Rhys factors

Sp= |vk|z/(ﬁwk)z ’ (15)
the quantities S, w,, and g,(f) are given by
S=2 1 Sul2n(wy) + 1], (16)
Tiwg = Tiwpg — 2 s 11wy Sy + 5 2 Ve [21(wy) + 1]+ O(25y)
(17
&1(t)=24 Sk{[n(wk) +1] e 1 n(w,) e* '} (18)

We have not given the expression for g,(f) because
it is quite complicated, and we intend to neglect its
contributions except in the region w =~ w, where its
primary role is to give a temperature -dependent
width to the zero-phonon line.. The approach used
is to simplify the analysis by keeping only the low-
est-order terms which yield the qualitative effects
of major importance. For this reason we will also
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neglect the terms of order v2, in #iw, because they
are not necessary to give a temperature dependence
to the peak position of the zero-phonon line. It
should be understood, however, that even though
g1(#) does not contain quadratic-coupling coefficients
explicitly, the mirror symmetry between absorp-
tion and emission characteristics of pure linear
coupling can be broken by quadratic-coupling ef-
fects in the transformation described by Eq. (6).

In the no-phonon region where w ~w,, the || -
behavior of g,(#) is most important. It can be
shown that in this limit, g,(f) has the asymptotic
forms. 11,13

g(t)~ - L,|t| , (19)
where

BT o= 125 v n(wy) [n(wy) + 1] 8(hw, — Fiw,e) . (20)
Py

Employing Eq. (19) and keeping only that part of
e¥1%) which does not depend on £, we find that the
no-phonon line is a Lorentzian described by

Golad; w) e [ITIo(c)) 2T/ [(w - wp)*+ T3]} .
(21)

Here,
¢, = S, cschzpiiw, (22)

and Iy(c,) is a zeroth-order modified Bessel func-
tion.

The total broad-band spectrum Gg(ab; w), defined
here as the entire spectrum minus the zero-phonon
contribution, is

Gplab; w)=G(ab; w) - Gylab; w)
o~ =S f.: diet w9yt [e®t ) "H,,Io (Ck)] .(23)

We have not included the shape of the no-phonon
line in this expression because we are most in-
terested in the behavior of Gy (ab; w) for frequencies
outside the no-phonon region.

Formal series expansions for the broad-band
spectral function Gz(ab ; w) can be obtained for ar-
bitrary temperatures, but these simplify greatly
in the limit T~ 0 where any vibronic structure pres-
ent is sharpest. We will therefore seek a detailed
picture of Gg(ab; w) only for T— 0. In this limit,
n(w,) =0, so electronic transitions can be accom-
panied only by phonon emission. The total Huang-
Rhys factor for the impurity reduces to

$=2%S,, (24)
and Eq. (18) becomes simply
gl(t)=z;k Se e tert (25)

Since now c,=0 and Ij(g)=1, the total broad-band
spectrum described by Eq. (23) can be expressed
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as a sum of n-phonon spectra by expanding
&1 1 in powers of g,(#); thus

Gplab; w)= 2 Gulab; w), (26)
n=1
with

Gylab; w)=e™S [ dt e~ [g,(O)I"/nt . (27)

2019

Substitution of Eq. (25) into Eq. (27) with n=1 yields
the one-phonon spectrum for absorption at T=0,
namely,

Gy(ab; w)=2me™ 22,5, 6[(w — wg) = w,). (28)

The n-phonon spectrum may be written as an n-fold
convolution of the one-phonon spectrum or explicitly
in terms of the S,’s and w,’s,

2ne=s [ 5 Gy(ab; w,) ... €5Giad; wy) ( 2 _ )
Gulab; w)=—1 j_; dwy*°° dw, r ! on - O\(w=-w) __,..Zn (wn = wo)
=2meS ) On,Cun (H -§3ni> 6<(w —w -2 nkw,,> . (29)
{ny, >0} TR h nh! R
|
An alternative procedure'” is to express G,as a 8,=S,/ 7 . (33)

convolution of G; and G,.; so that
G,(ab; w)=(e5/2mmn) f_: dw, Gy(ab; wy)
X Gpqlab; w=wy+we) . (30)

This form is probably more convenient for general
applications, although we have used Eq. (29) for
the calculations in this paper.

As 7 increases, whatever structure occurs in
the one-phonon spectrum tends to be washed out by
the convolution process, making G,(ab; w) smoother
for larger n. Moment analysis may therefore be
useful for calculating the higher n-phonon spectra.
This problem will be considered in detail in Sec.
IIC, but it seems appropriate here to note a famil-

* iar result of such analysis. At T=0, the ratio of
the integrated intensity of the n-phonon spectrum
to the integrated intensity under the total broad-
band curve is

[dwGylab;w) S* ™8 (31)
[5dwGglab; w) n! (1-e7)°

Equation (31) is valid for all », including n=0,
thereby providing a standard measure of the total
Huang-Rhys factor at T=0.

The equations written so far for absorption can
be applied directly to emission, with two modifica-
tions. First, as indicated by Egs. (5a) and (5b) and
(7a) and (7b), the absorption frequencies and cou-
pling coefficients wy, wy, v and v, should be
replaced by their counterparts for emission Q,,
Qe Vi, and V. The individual-mode Huang-
Rhys factors S8, for emission are

8,= | V| 2/ (2, )%, (32)

and for the case of no off-diagonal quadratic cou-
pling, we find from Eqgs. (8), (9), (15), and (32)
that

For weak quadratic coupling,
Vo= /Wy = [1 + 2(vp/Biwy) |2

is close to unity, and the phonon frequency shifts
between emission and absorption are small. How-
ever, weak quadratic coupling produces much larg-
er differences in the individual-mode Huang-Rhys
factors and correspondingly in their sum; this is

a major factor in breaking the mirror symmetry
between absorption and emission. Second, the sign
of the photon frequency referred to the no-phonon
line should be changed in going from absorption to
emission. This can be accomplished directly by
letting w — wy—~ — (w — wy) in expressions for the
spectral functions, or indirectly, by replacing w,
by -, everywhere it.occurs except as an argument
of Bose-Einstein functions.

C. Moment Analysis

The moment analysis approach used to approxi-
mate the higher n-phonon absorption spectra at
T=0 and the total broad-band spectrum as a func-
tion of temperature is described here. In order to
obtain the desired range of application, we have
included the first five moments or cumulants in our
analysis. '*!® Some of the equations involved are
rather cumbersome to write down, though easy to
use, and since we feel they may be of interest to
other workers, we have included them in Appendix
B.

For a function f(w) defined by [cf. Eq. (4)]

flw= " dtett £(t), (34)

the area under f (w) and the mth moment about the
origin are given by

F=[" do f(w)=21f(t=0), (35)
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(w™y=F" [~ dww’"f(w)=[[f(t)]"(i%)mf(t]’ .

=0
(36)
Moments about the mean are defined by ( (Aw)™)
=((w-{w))™). In particular, the mean frequency
and the mean square width, which are often all
that are used in simple semiclassical fits to ex-
perimental broad-band data, are found from

(; 4
(=(id ) (3
2y _ af,d\?
((80) >—[Lf(t>] (z dt) f(t)] o (38)
In terms of the dimensionless variable x,
x=(w=-{w))/[{(aw)?)]'/2, (39)

an asymptotic expansion for f(w) is?:®
f(w)=F [2n((aw))]1/2 g¥/2
X{ 147, fun () +[va far (%) + 7 fa(x)]

+[vs faa(®) + 172 fo(¥) + 73 fas(X)]++< -} . (40)

¥1 and ¥, are the coefficients of skewness and ex-
cess, and yjis the coefficient for the fifth cumu-
lant; the v; and the functions f;(x) are given in Ap-
pendix B. We will sometimes refer to curves gen-
erated from Eq. (40) as skewed Gaussians, since
they reduce to Gaussians when y, =y, =y3=0.

The moments and cumulants of each of the in-
dividual n-phonon spectra at T=0 are found [cf.
Eqs. (27) and (34)] by using f(#)=e™5 [g,()]*/n! in
Eqs. (35)-(38). Similarly, the temperature-depen-
dent broad-band moment parameters are determined
by substituting Eqs. (18) and (23) into Egs. (35)—
(38), noting that S(T)=g,(t=0; T). These results
are given in Appendix B.

If the non-Gaussian corrections in Eq. (40) are
neglected, the full width at half-maximum of f (w)
is

Aw=[8(In2) ((Aw)?)]/?, (41)

which is sometimes a good approximation even for
smooth curves skewed considerably away from a
Gaussian line shape. The corresponding approxi-
mation for the peak position of f(w) i8 Wyae={ W),
but this is acceptable much less frequently. The
familiar semiclassical, one-configurational-co-
ordinate formulas for the broad-band peak position
and half-width can be recovered from the general
results in Appendix B by making these approxima-

|

hwp

tions, dropping the summations over modes in
Eqgs. (B19) and (B20) for ( w); and {(Aw)? 5 and set-
ting 6=0 in these expressions. Denoting the fre-
quency and Huang-Rhys factor of the single mode
in absorption by w, and S,, we then have

Wmax = W Sz ’ (42)
Aw(0)=[8(1n2) S, % w, , (43)
Aw(T)/Aw(0) = (cothfrw,)' /2 . (44)

We would like to make several points about the
moment analysis results given in this section and
Appendix B. First, it can be seen by comparing
Egs. (B10)-(B15) and (B18)-(B23) that at T=0 the
n-phonon spectral moments and cumulants are
simply related (by factors involving only » and S)
to those of the fotal broad-band curve. Estimates
from experiment of the broad-band moments may
therefore be a valuable aid in attempting to recon-
struct the one-phonon spectrum from the total ob-
served spectrum. Second, including the fifth cu-
mulant corrections and others of the same order of
magnitude [the y3, Y7, and ¥} terms in Eq. (40)]
produces noticeable improvements for computation-
al purposes. In some cases, for example, G,(ab; w)
can be calculated by moment analysis for at least
one lower value of » when these terms are included
rather than when they are not. Also, by including
them we usually obtain better agreement between
the T'=0 broad-band curve found by summing the
G,(ab; w) and that determined directly by moment
analysis. Finally, to apply the moment equations
to emission, we can simply replace w and Aw by
—w and — Aw on the left-hand sides of Eqs. (B11)-
(B15) and (B19)~(B23) and substitute £, and 8, for
wg and S, on the right-hand sides.

D. Temperature Dependence of the Zero-Phonon Line

The peak position and the half-width of the zero-
phonon line depend on temperature through the qua-
dratic-coupling terms in Eqs. (17) and (20). Since
reliable information about the v, will seldom be
available in any case, an approximation which will
allow us to estimate their magnitudes without un-
duly complicating the analysis would be useful. The
approximation v, = @v, v, '>*" has been used in the
past, and we suggest a slight generalization of it
here. Recalling from Eq. (15) that 12,12 = (fiw,)?S,,
we define dimensionless parameters a; and a, by

a, Vs [200(w,) + 1]

Ty = 3 (1w )5S, 2n(wy) + 1] ° (45)

( —0‘—2—)2= 5} Vo n(wy) [n(w,) +1] 8(Fw, —ﬁwk'%§ [ S] [y Y2 Sye 1 m(wy) [(wy) + 1] 6(Fiw,, — Fiwye), (486)
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where wp is an arbitrary characteristic phonon fre-
quency introduced for scaling purposes; for the
present problem, a reasonable choice for wp might
be wp=3, Wy Sp/TsSp. In terms of a; and @,, the no-
phonon peak position and half-width given in Egs.
(17) and (20) now become

Tiwg=Fwpg — 2 i, Sy
+(0y/2hiwp) 2o (wy)?S, [2n(w,) +1]  (47)

and
% ¥ 2 2
ATy= 11( ﬁw») ka) [(7w,)?S,] [(Fwye )2S,]

x n(wy) [1(wy) + 1] 8(hw, = iw,e) . (48)

a; and @, are functions only of the temperature;
they approach constant values at high temperature
and vary at low temperature in a manner which re-
flects how differently the vy, and the products v, v,
weight the phonon frequency distribution. Neglect-
ing the temperature dependence of @; and o3 is an
approximation much like assuming a single Debye
temperature ®(7) for two different thermodynamic
properties of a crystal. With this approximation,
the only phonon parameters needed to calculate the
total absorption spectrum G(ab; w), including the
no-phonon line Gy(ab; w), are the phonon frequencies
wg and Huang-Rhys factors S,.

Thus far not many experimental studies of the
temperature dependence of zero-phonon lines have
been made and in the illustrative example consid-
ered in Sec. IV nothing will be said about the matter
because of lack of experimental data. However, in
a paper to follow shortly, the results of a detailed
experimental and theoretical study of the absorption
and emission bands of one of the M centers in MgF,
will be given. From that work, it will be seen that
the temperature dependence of the position and
width of the zero-phonon line is given rather well
by Eqs. (47) and (48) within the limits of accuracy
of the experimental data.

III. COMPUTATIONAL DETAILS

The starting point for the application of the theory
presented in the Sec. II is an estimate of G,(ab; w)
at T=0 as expressed by Eq. (28). G,(ab; w) is
essentially a weighted one-phonon density of states
which involves the individual mode frequencies w,
and Huang-Rhys factors S, in addition to the total
Huang-Rhys factor S. Of course, the w, and S, are
generally not known with any precision and, in fact,
we would like to extract information about these
quantities from the experimental data. In principle,
we can derive G(ab; w) from the observed broad-
band spectrum at T=0 simply by subtracting from
Gglab; w) the sum of the n-phonon spectra for n22,
(It should be remembered that G does not contain
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the no-phonon contribution.) However, since G,(ab;
w) is needed in order to generate the G, contained
in Gp, some type of iterative procedure is called
for. One can be set up as follows. Given an initial
estimate of the effective one-phonon spectrum, Gy
is calculated and compared with the experimental
curve. If the results are not satisfactory, a new
one-phonon spectrum is obtained by calculating the
sum of the G, for »22 and subtracting the resulting
curve from the experimental one. This process is
then repeated until satisfactory results are
achieved. In practice, such a simple procedure
encounters some problems, including the occasion-
al prediction of negative Huang-Rhys factors, and,
as a consequence, it is difficult to fully automate

it for a computer.

A starting one-phonon spectrum may be found in
several ways. In cases where one has reason to
believe that most of the vibronic structure is due
to one-phonon processes, an intuitive approach in
which the spectrum is roughly estimated from the
experimental data may be adequate. A perfect
crystal density of states py, or various symmetry
projections of it, when these are available, may be
useful in determining a first approximation to
Gy(ab; w). If neither of these methods is viable, as
may be the case when relatively little vibronic
structure is superimposed on a smooth broad band,
moment analysis may be extremely useful in the
following way. The first two moments of the total
experimental curve can be estimated from the peak
position and the half-width. Since there is a simple
relationship between the broad-band moments and
the moments of the z-phonon processes for every
value of #, a Gaussian-like one-phonon spectrum
can be readily obtained. This spectrum will of
course not have any pronounced structure, but it
will have the virtue of giving the first two moments
of the experimental curve rather well. A refine-
ment of the effective one-phonon density of states
which does contain structure is then found by sub-
tracting the calculated sum of G,(ab; w) for n=2
from the experimental curve as discussed above
for the iterative procedure.

The model assumed for numerical calculations
might be thought of as being based on a kind of
many -configurational-coordinate picture. The
roughly 10% phonon modes of the crystal are re-
placed by a finite but large number of modes, even-
ly spaced in frequency, with the sum of the
strengths S, normalized to the total Huang-Rhys
factor at T=0. However, a more general approach
can be set up by defining a function S(w),

S(w) =27, S 6(w = wy) (49)

which, since S, is dimensionless, has the dimen-
sions of the usual density of states. In transform-
ing the formulas given in terms of S,, w, and
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sums over k to expressions involving S(w), w, and
integrals over w, the factor IT, Iy(c,) causes the

only problem, and then only for T#0. If moment
analysis is to have any utility for determining
broad-band characteristics as functions of tempera-
ture, however, this factor is relatively unimpor-
tant, In any event, an alternative way of arriving
at the model to be used is to replace the continuous
effective density of states S(w) by a series of evenly
spaced 6 functions:

S(w) =224 Sy 6(w = kA) . (50)

The set of strengths S, and the frequency interval
A are the only nontrivial inputs for the calculations
in a single iteration.

At T=0, the lower n-phonon spectra are gener-
ated for each value of %z both by convoluting the
one-phonon spectrum according to Eq. (29) or (30)
and by moment analysis from Egs. (39) and (40)
and (B1)-(B15). The convolution process is stopped
once an rms difference comparison of the two meth-
ods shows that moment analysis is adequate for
larger values of n. The total broad-band spectrum
is then given as the sum of the G,(ab; w). All re-
sults are plotted by connecting consecutive points
(6-function strengths) with straight lines; as drawn,
the curves rigorously satisfy rule (31) for the ratios
of the integrated intensities at T=0.

A few remarks on the computer time required
by our program may be of interest. The amount
of machine time depends primarily on the number
of 6-function spikes used to represent the one-
phonon spectrum and on the value of » at which it
becomes possible to determine the n-phonon spec-
trum by moment analysis. The total number of
terms in the sum on the right-hand side of Eq. (29)
or (30) is a rapidly increasing function both of the
number of spikes m, and the number of phonons.

In terms of computer time with our codes, cal-
culating the n-phonon spectra through n=3 for m
=100 by convoluting the one-phonon spectrum ac-
cording to Eq. (29) takes a few seconds on the IBM
360-91. The computer time also depends on the
magnitude of the total Huang-Rhys factor, since
the vibronic structure tends to disappear as S in-
creases. Thus, although the structure in the lower
n-phonon spectra may be quite pronounced, it con-
tributes less to the total spectrum as S increases.
This means that for larger S the decision about the
value of » at which to use moment analysis for
G,(ab ; w) is not very crucial.

As already noted, emission can be treated in the
same way as absorption, but with a different one-
phonon spectrum { > Sa and a change in the sign
of the photon frequency referred to the no-phonon
line. An emission spectrum could be obtained in
exactly the manner described above for absorption,
but the more interesting problem is to attempt a
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description of both emission and absorption within
a unified framework. As a first step toward this
objective, we will neglect off-diagonal quadratic
coupling and use Egs. (9)-(13b) and (33), which are
exact in this approximation, to relate the emission
and absorption spectra. Although this simplifies
matters considerably, there remains the problem
of determining the diagonal coupling coefficients
v We would like to express these coefficients in
terms of the more accessible parameters we have
been working with through most of the discussion,
namely, w, and S, (or &, and 8,). Two simple ap-
proximations are suggested in the literature. 31320
In the first of these, it is assumed that

(51)

where € is a proportionality constant which is the
same for all k. This applies directly for band
modes in the long-wavelength limit and may be
adequate for our purposes for all modes. Substi-
tuting (51) into Eqgs. (8) and (33), we find that the
phonon frequencies and Huang-Rhys factors for
emission are related to those for absorption in this
approximation by

VUpp = Eh’w,, N

Qp=vowy, (52)
8:=S/70 » (53)
where

vo=(1+2¢)'/2, (54)

Since w, and S, are simply multiplied by constants
in Eqgs. (52) and (53), this is a particularly con-
venient model to use for calculations.

The second possibility, already touched on in the
discussion of the zero-phonon line, is to assume
that the quadratic-coupling coefficients are propor-
tional to the squares of the linear-coupling coeffi-
cients,

v= (@/Twp) | v,| %= (a/Bwp) (Fw,?S, .« (55)

Here, as in Eqs. (45) and (46), %wp has been intro-
duced to make o dimensionless. Equations (8) and
(33) for the phonon parameters in emission are un-
changed, but v, is now given by

Yp=[1+2a(w,/wp) S, 1z, (56)

In the model used for numerical calculations, this
is a slightly less convenient approximation than the
preceding one, and we have not found it necessary
to employ it in this paper. It does have the ad-
vantage, however, of predicting relatively larger
quadratic coupling for those modes which have the
strongest linear-coupling coefficients, which seems
intuitively reasonable.

IV. RESULTS OF AN EXAMPLE

The defect we will use to illustrate our approach
is the N, color center in NaCl, which has been
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FIG. 1. The calculated total broad-band spectrum

and its n-phonon components at 7=0. The curves in this
and all succeeding figures were drawn by a Calcomp
plotter.

studied experimentally by Hughes?! and Pierce. %
From stress splitting measurements on the zero-
phonon line of the observed electronic transition,
they conclude that this defect has monoclinic I sym-
metry, and may be an aggregate of either two or
four F centers. The low-temperature absorption
spectrum for this transition exhibits a very large
amount of vibronic structure and thus provides a
good test of the methods described above for the
calculation of Gg(ab; w) at T=0. However, due to
insufficient experimental information available to
us for this center, we cannot illustrate the calcula-
tions of the temperature dependence of the no-pho-
non parameters. As previously mentioned, a
combined experimental and theoretical study of the
optical spectra of one of the M centers in MgF, will
appear separately, and this will include an analysis
of these parameters.

Our final result for the effective one-phonon
spectrum for absorption by the N; center is shown
in Fig. 1. It is constructed from 99 spikes, with
an interspike spacing of A=0.05%10'® rad/sec
(= 0. 329 meV) and a total Huang-Rhys factor of S
=1.81. The figure also shows the calculated total
broad-band absorption spectrum Gg(ab; w), as well
as all other n-phonon contributions of importance.
As Hughes conjectures, most of the observed struc-
ture arises from the one-phonon spectrum. How-
ever, our calculation shows that the last broad
peak is mainly due to one- and two-phonon contri-
butions, and not to four-phonon processes involving
the first peak in the one-phonon curve as Hughes
suggests. Three-phonon processes give rise to
the hump between 0. 03 and 0. 04 eV, and the back-
ground on which the structure is superimposed
comes primarily from the one-, two-, and three-
phonon spectra. Moment analysis was used to de-
termine G,(ab; w) for 24, and, in fact, might well
have been used for n=3 also. The low-frequency
tail of the four-phonon curve does extend into the
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region where structure occurs, and the n-phonon
processes where n=4 or higher determine the shape
of the total spectrum at larger values of w — wgy, SO
that these contributions cannot be neglected.

Figure 2 compares the calculated and experi-
mental results for Ggz(ab; w). Both curves were
drawn by connecting 5-function spikes, separated
by 0. 329 meV, with straight lines. Experimental
values for Gg(ab; w) were taken from Hughes’s re-
sults?® for wG(ab; w), using his Fig. 4 for w - wy
=0 out to just beyond the last peak, and his Fig. 1
for the remainder. In putting together the informa-
tion from the two figures, we encountered some
uncertainties in matching, and the high-frequency
part of the experimental spectrum obtained after
dividing by w is not as well determined as it is in
the region where structure appears. Since Hughes
gives no precise value for the no-phonon peak
height, we simply made a linear extrapolation of
wGp(ab; w) to 0 at w=w, in order to subtract out
the no-phonon line, so the experimental curve for
Gglab; w) is also somewhat uncertain for small
w —wg The calculated and experimental curves
cannot be distinguished from one another over the
whole range in which vibronic structure occurs,
and only minor differences are apparent in the high-
er-frequency region where our extraction of the
experimental results from Hughes’s paper is not
completely reliable.

Given the one-phonon spectrum in Fig, 1, it took
less than two seconds on an IBM 360-91 to generate
all of the other curves in that figure and in Fig. 2.
With this kind of time factor for each iteration, it
was possible to do a large number of them to obtain
the final fit to experimental results. The starting
one-phonon spectrum included 24 peaks proportion-
al to po(w)/w?, with po(w) taken from Hughes’s plot
of the results of Karo and Hardy.?* Several itera-
tions were done with 24 peaks in the one-phonon
spectrum, the number of peaks was doubled, sever-
al more iterations were performed, and the number
of peaks was doubled again. The last 40 or so iter-
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FIG. 2. Calculated and experimental results for

Gglab; w) at T=0,
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FIG. 3. The spectrum and its components at 7'=0
when the total Huang-Rhys factor is doubled.

ations were typically done in groups of 4 or 5 at
constant values of S, and the only external interven-
tion required was to change S in successively
smaller intervals. Although the details of the itera-
tive procedure may vary to some extent with the
center and with the experimental resolution, which
for this example is excellent, it should be clear
that the starting one-phonon spectrum is not crucial
to the final results, and that a major feature of the
fitting procedure is the determination of the total
Huang-Rhys factor S. To further emphasize this
last point, Fig. 3 shows the total and the n-phonon
spectra produced by the same one-phonon spectrum
as in Fig. 1 but with twice the total Huang-Rhys fac-
tor. Vibronic structure is still present in Gg(ab;
w), but it is much less pronounced and is super-
imposed on the low-frequency side of a more Gaus-
sian-like broad band. Figure 4 compares the total
curve in Fig. 3 with the corresponding moment-
analysis result, and it can be seen that the skewed
Gaussian curve is a reasonably good approximation
to the over-all line shape. For S of the order of

4 or higher, moment analysis should generally

give acceptable values for the temperature depen-
dence of the broad-band half-width.

We have not seen any experimental studies of
emission by the NaCl N; center, but we can demon-
strate how asymmetry between absorption and
emission might arise. For this purpose, we ne-
glect off-diagonal coupling and assume v, w,, SO
that Egs. (52)-(54) describe the relationship be-
tween the one-phonon spectra for emission and ab-
sorption, Figure 5 shows the results obtained when
the phonon frequencies for emission and absorption
are the same or differ by 10% in either direction.
With no quadratic coupling, the absorption and
emission functions Gg(ab; w) and Gg(ba; w) are in-
deed mirror images about the no-phonon line, as
seen in Fig. 5(b). If the phonon frequencies in
emission are lower by 10%, yo=8,/w,=0.90, the
individual-mode Huang-Rhys factors §, and the total
§ are larger by more than 100%, §,/S,=8/S=1/y}
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=2.09. As shown in Fig. 5(a), the emission spec-
trum is then broader than the absorption spectrum,
and vibronic structure is much less pronounced.
The reverse situation is presented in Fig. 5(c),
which reflects positive quadratic coupling sufficient
to increase the phonon frequencies in emission by
10%, vo=%,/w,=1.10, and to reduce the Haung-
Rhys factors by about 50%, §,/S,=8/S=1/y}=0.513.
For this case, the emission spectrum is narrower
than the absorption spectrum, and the vibronic
structure is somewhat more pronounced. Figure

5 vividly demonstrates that relatively small
amounts of quadratic coupling can produce sub-
stantial asymmetry between absorption and emis-
sion.

It is instructive to compare the one-phonon spec-
trum for absorption with several perfect lattice
functions. Figures 6(a)~-6(c) show the comparison
between G;(ab; w) from Fig. 1 and the perfect lat-
tice distributions py(w), po(w)/w, and py(w)/w? cal-
culated from a shell model fitted to neutron scat-
tering data.?® With the exception of the first broad
peak in G,(ab; w), the structure in the one-phonon
spectrum corresponds rather well to that seen in
the perfect lattice density-of-states functions; as
both Hughes and Pierce remark, this first peak is
probably due to pseudolocalized (resonant) modes.
Not surprisingly, G,(ab; w) is not well approximated
in detail by any of the three perfect lattice curves,
but the over-all fit is clearly better for py(w)/w
and po(w)/w? than for py(w) itself. The usual com-
parison made is between pg(w) and w?G(ab; w),3:2%:2
which is recast in Fig. 6(c) as a comparison be-
tween G,(ab; w) and py(w)/w?. Only po(w)/w? actual-
ly has a peak corresponding to the second peak in
the one-phonon spectrum, but from quite general
considerations py(w)/ w? approaches a constant at
w=0 while G,(ab; w) should go linearly to zero.
Furthermore, above v ~3x10' Hz, pylw)/w seems
to be slightly closer to G,(ab; w) than is pg(w)/w?.
Returning to a point discussed briefly in Sec. III,
the best choice for a starting one-phonon spectrum
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FIG. 4. Comparison of the total curve in Fig. 3. with
the corresponding moment analysis result.
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would thus appear to be G,(ab; w)x< po(w)/w’, where
1<1<2,

V. DISCUSSION

Our objective in the work reported in this paper
was the development of a computational approach
and computer programs to implement it which
would enable us to apply the theory of vibronic
structure of impurity-related optical spectra to a
wide variety of systems. The results of prelimi-
nary testing on the N; center in NaCl reported here-
in and on one of the M centers in MgF, to be re-
ported in a later paper have been quite encouraging.
Further testing on other systems is in progress.
Significant features of the work are (i) an iterative
procedure to extract an effective one-phonon den-
sity of states from experimental data; (ii) the com-
bination of moment analysis and convolution inte-

-0.04

-0.06 -008 -0.10

grals to increase the efficiency of the foregoing;
and (iii) the inclusion of quadratic-coupling effects
in an approximate but probably quite useful manner.

The essentially exact fit between the calculated
and experimental results for the N, center in the
region where vibronic structure occurs may raise
a few questions. First, one might wonder if any
arbitrary “experimental” curve can be fitted with
the same accuracy. In a completely trivial sense
this is indeed the case, because by assuming that
the whole spectrum is due entirely to one-phonon
processes an exact fit can always be forced. A
total Huang-Rhys factor S and individual mode S,’s
could be found, with S« 1, in order that Gz(w)
=G,(w) [see Eq. (31)]. However, such trivial re-
sults can easily be ruled out for a variety of rea-
sons. For example, the value of S found in this way
would give quite unreasonable results for the
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strength of the no-phonon line, and the tempera-
ture dependence of the broad-band half-width would
be wrong. Also, the frequency range spanned by
the perfect lattice density of states would bear no
relation to that of the derived one-phonon spectrum.
Our procedure does not impose the requirement
that the ranges of the one-phonon spectrum and the
perfect crystal density of states coincide, although
we do expect fairly close coincidence in a variety
of cases. For the NaCl N, center, for example,
our derived G,(ab; w) covers the same frequency
range as po(w), whereas the total spectrum covers
a range more than twice as great. The same kind
of fit to experiment with a broader one-phonon
spectrum cannot be approached without increasing
the one-phonon frequency range by 40 to 50% or
more and, correspondingly, reducing the Huang-
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FIG. 6. (a) Comparison of the one-phonon spectrum
with py(w). (b) Comparison of the one-phonon spectrum
with py(w)/w. (c) Comparison of the one-phonon spectrum

with py(w)/w?,

Rhys factor to 1. 3-1. 2 or lower, which represents
a substantial move toward the kind of trivial fit
described at the beginning of the paragraph.
A second question concerns the uniqueness of
the one-phonon spectrum obtained by our fitting
procedure. The answer must depend to some ex-
tent on the shape of the observed spectrum, the ex-
perimental resolution, and the amount of vibronic
structure present, For the Gaussian-like broad
bands with no structure which occur for large val-
ues of S, it is clearly impossible to work back-
wards from the total curve to find a unique one-
phonon spectrum. Furthermore, one should rely
not only on the observed broad-band spectrum at
T =0 for a given center, but also on whatever other
information and physical insight can be brought to
bear on the problem. For example, as noted above,
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there is a correlation between the value of the total
Huang-Rhys factor and the width of the one-phonon
spectrum that gives the “best fit” for that value,

although that “best fit” may be unacceptable, since
it is, of course, not possible to obtain satisfactory

results with arbitrary S values or frequency ranges.

To test the sensitivity of our results to the starting
one-phonon spectrum, we have generated essential-
ly the same final results for one center by begin-
ning with quite different trial spectra, subject only
to the constraint that the Huang-Rhys factor be
within reasonable limits of the value estimated
from the zero-phonon intensity. Starting from both
a smooth one-phonon curve generated by moment
analysis and a highly structured curve obtained in-
tuitively from experimental data, we arrived at
final one-phonon spectra which were virtually in-
distinguishable. In summary then, the answer to
the question of uniqueness depends on the quality,
quantity, and detail of the information available.
We would like to conclude by mentioning a few
applications and extensions of the calculational
procedure we have described. One possibility is
to study the defect-lattice interaction in greater
detail by combining the present treatment with a
first-principles calculation of coupling coefficients.
It should not be difficult to extend the methods used
to determine the broad-band spectrum at 7'=0 to
nonzero temperatures, or to amend the computa-
tional model to smooth out the calculated curves
by giving a width to the d-function spikes. Finally,
in order to deal with a larger number of impurities
and defects, it would be necessary to try to apply
the same kinds of techniques to systems where or-
bital degeneracy is an important factor. The basic
theory for such centers already exists, ® and we
plan to try to extend our approach to cover these
cases in the near future.

APPENDIX A: ONE-CONFIGURATIONAL-
COORDINATE MODEL

We consider here the single-configurational-co-
ordinate model for an interacting defect-lattice
system in order to show how it relates to the more
general approach. In the notation of Klick, Patter-
son, and Knox,?" one-configurational-coordinate
Hamiltonians for the ground and excited states may
be written as

H,=p?/2m+ 3K, X%, (Ala)

Hy=Eo+p%/2m+ 3K (X = Xo)? . (Alb)

The ground- and excited-state phonon frequencies
are w,=(K,/m)'/? and w,= (K,/m)''2. Introducing
phonon creation and destruction operators in the
usual way, i.e.,

X=(r/2mwy)'? (a+a"), (A2a)
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we obtain
H,=hwg(a"a+3), (A3)

Hy=H,+Eo+ 3K, X5 =K, X, (w,/2K,)'/* (a+a)

+3[(K, -K) /2K, ) hiw, (a+at)? . (A4)

We now define an energy 7w,, and linear- and
quadratic-coupling coefficients », and v, (dimen-
sionally also energies) by

Fwp,=Eg+ 3K, X3, (A5)
v = - (w,/2K,)' K X, (A8)
v =[(K, - K,)/2K | hiw, . (A7)

The quadratic-coupling coefficient v, vanishes if
K,=K,, or equivalently, if the ground- and excited-
state frequencies w, and w, are the same. The
linear coupling is zero if X,=0. In terms of Zw,,,
vy, and v;, Eq. (A4) takes the simple form

Hy=H,+ iwy,+ v1(a+a’) + s va(a+a')? . (A8)

It may now be observed that, except for a shift in
the energy origin, the more general Hamiltonian
definitions (5a) and (5b) reduce to Eqs. (A3) and
(A8) for the case of a single mode.

APPENDIX B: MOMENT-ANALYSIS EQUATIONS
The coefficients y; in the moment-analysis ex-

pansion (40) for f(w) are defined in terms of the
central moments of f (w) by

v1={(80)*)/[((Aw)?]?/2, (B1)
v2={{(aw)*)- 3{(aw)*) /[ {(aw)D], (B2)
73 =[{(80)%)- 10((20)%) (AW ]/[{(Aw)H)]? 2 .

(B3)

The functions f;,(x) in Eq. (40) are
ful)=¢x (x2-3), (B4)
Jax) =gr(x* - 6%+ 3) , (B5)
Faax) =75(x &~ 155 + 455 %2 - 15) , (B6)
Fa(x) =ghx(x* — 1042 +15) , (B7)
Faa(x) =ghga(x® - 21x*+105x% - 105) , (B8)

Fas(x) =pa(x ® — 36x &+ 378x ¢ — 1260x 2 + 945) .

(B9)
For convenience, all photon frequencies are re-
ferred to the no-phonon frequency w, in what fol-
lows. In particular, the broad-band and »-phonon
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mean frequencies which appear below are measured
from w.

The moments and cumulants of the individual »-
phonon spectra at T=0, found by using f(f) =e™5
x[£:®]"/n! in Eqs. (35)-(38), are as follows (a
subscript # is implied on all angular brackets, the
sums run over modes 2, and N=#n/S):

F=2me"58"/n! , (B10)

(w>=NZ>wk Se » (Bll)

MOSTOLLER, GANGULY, AND wWOOD 4

{(Aw)® =N wiS, —{w)¥/n,
A ((AP) P2 =NTwis, - 3((Aw)?) (w)/n?

- <w>3/n2 ’

(B12)

(B13)
v ((Aw)? )P =N wiS,
—{4{(aw)*){w) +3[ ((Aw)?)}/n

-6 ((AwP)(w)*/n? - (w)!/n®, (Bl14)

vl ((Aw)?)P2=N2 wiS, - 5{((aw)*) = 3 ((Aw)*)1F (w)/n - 10{ (Aw)®*) {(Aw)?)/n

{10 ((Aw)®) (w)?+ 15[ ((Aw)*)F{w)}/n? - 10{ (Aw)?) { w)¥/n® = {w )’ /nt .

The temperature-dependent broad-band moment
parameters follow from Eqs. (18), (23), and (35)-

(38). Defining factors 5 and A by
Fp=21(1-0) , (B16)
(W)=A 2 w,S,, (B17)

we obtain the following results (a subscript B on
all () is suppressed and the sums again run over
k):

Fg=2n(1-%), (B18)

(B15)
T
(W)=A2] WSy, (B19)
((Aw)?y=AY] wiS,[2n(w,) +1] =8 w)?, (B20)

n{(@w)P2=a7 u;s,

- 5{3((Aw)*)(w) - (1 -20)( w)’}, (B21)
val ((Aw)?)P=AZ w} S, [2n(w,) +1]
- 8{4((aw)*)(w) +3[((aw)*)

-6(1 -26) ((Aw)?) (w)2+(1 - 65+68%){ w)?'} , (B22)

73 [{(AwP)2=A T Wi S, - 6{5[((aw)*) - 3({ (Aaw)?))2]{w) + 10{(Aw)®) {(Aw)?) = 10(1 - 28) ((Aw)*){ w)?
-15(1 - 26) [{(Aw)?) P w) +10(1 - 65+ 65%) ((Aw)®) (w)® - (1 =145+ 366% — 245%) (w)°} . (B23)

In the last four of these expressions, the first term
is the dominant one if the total Huang-Rhys factor
S(7) is appreciably greater than unity. If § is set
equal to zero, then Egs. (B18)-(B23) give the mo-

ments and cumulants of the total absorption curve
G(ab; w), rather than just its broad-band part
Galab; w)=Glab ; w) -~ Gylab ; w).
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The thermal conductivity of vitreous SiO,, Se, and silica- and germania-based glasses has
been measured between 0.05 and 100°K. Comparison with earlier work on noncrystalline
solids shows that they all have the same conductivity within a factor of 5 over the entire tem-
perature range investigated, with the same characteristic plateau around 10°K, and that their
conductivity varies as T", n~ 1.8, below T=1°K. Furthermore, the average phonon mean
free path is large by comparison with the phonon wavelength, about 10~ cm at 2°K and de-
creasing as T™¢ at larger T, suggesting a Rayleigh-type scattering mechanism. Such a mean
free path can be quantitatively explained by approximating the glassy structure with that of a
crystal in which every atom is displaced from its lattice site. Then every atom scatters like
an interstitial atom, or—even simpler—like one that is missing at its regular lattice site, with
a scattering cross section determined by the missing mass (isotopic defect). The specific
heat of amorphous 8i0,, GeO,, and Se has been found to vary as AT +BT" between 0.1 and
1°K, with A=10 erg/g °K%to within a factor of 2. This departure from the Debye specific
heat may be characteristic of the glassy state, as all earlier measurements of other glasses
[polystyrene, glycerol, Lucite (PMMA)] indicate a similar anomaly. Its origin is not clear.
Impurities or surface effects through adsorbed gases are unlikely because of the many sam-
ples and experimental techniques used in different laboratories. We have tried to attribute
the anomaly to low-lying electronic states, motional states of ions, trapped atoms or large
groups of atoms, or one-dimensional vibrations within a three-dimensional solid, so far with-
out success. At the present time, the only independent evidence for these excitations appears
to be in the low-temperature thermal conductivity at 7'<1°K described above.

I. INTRODUCTION

The thermal conductivity of noncrystalline di-
electric solids differs markedly from that of crys-
talline ones.”? As an example, Fig. 1 shows the
conductivities of crystalline and vitreous silicon
dioxide. In crystals, the conductivity increases
with decreasing temperature because the anhar-
monic umklapp processes become less frequent,
and hence the phonon mean free path increases.
Eventually, the mean free path becomes compara-
ble to the sample dimensions, and the conductivity
goes through a maximum and then decreases as the

specific heat decreases.® The conductivity of crys-
tals depends very much on the material, and in ad-
dition any disturbance of the lattice periodicity
lowers the conductivity in a sometimes very char-
acteristic way, as shown in Fig. 1, for example.*
In noncrystalline solids, the conductivity is several
orders of magnitude smaller than in crystals, it
decreases monotonically with decreasing tempera-
ture, and furthermore it is independent of the chem-
ical composition: In Fig. 2, the conductivity of
vitreous silica?®=" is compared with that of silica-
based glasses containing large amounts of other
oxides.*®=!® The conductivities are practically



